Compact complex submanifolds immersed in complex projective spaces
نویسندگان
چکیده
منابع مشابه
Willmore Lagrangian Submanifolds in Complex Projective Space
Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex projective space CPn and let S and H be the squared norm of the second fundamental form and the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q the functions which assign to each point of M the infimum of the sectional curvature and Ricci curvature at the point. We prove some inte...
متن کاملIsotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملbiquaternions lie algebra and complex-projective spaces
in this paper, lie group structure and lie algebra structure of unit complex 3-sphere are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of and the special complex unitary matrices (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers . the relat...
متن کاملComplex Extensors and Lagrangian Submanifolds in Complex Euclidean Spaces
Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian submanifolds next to totally geodesic ones in complex-space-forms. The class of Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space and each unit speed curve F in the complex plane, we introduce the notion of the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1973
ISSN: 0022-040X
DOI: 10.4310/jdg/1214431965